本記事では、データ分析の民主化に向けた現状の課題とその克服の鍵としてLTSデータ分析事業部が提唱している「BI Ops」という考え方を紹介していきます。
業務システムの開発・導入支援を経験した後、データサイエンティストチームに参画。金融・商社を中心に、データ利活用の促進を支援。最近では、デジタルマーケティング施策の企画・設計にも携わる。(2024年5月時点)
データ分析の民主化における課題
まずは現場で働くデータサイエンティストの観点から、「データ分析の民主化」に向けて分析活動を社内に展開していく際にぶつかる、よくある課題をいくつかご紹介します。
分析リードタイムが長いために必要なタイミングで分析結果を提供できない
データサイエンティストは、営業や施策実施部門からの要望やリクエストに基づき、データ分析を行います。この分析には、部門の具体的なニーズに応えるために業務の課題や背景、関連する業務内容の理解が不可欠です。また、どのようなデータが利用可能で、それがどのように生成されたかについての詳細なヒアリングも必要となります。
データの収集と内容の理解には時間がかかるため、分析開始後もフィードバックと改善を繰り返しながら、最終的な分析結果を導き出すことになります。しかし、このような時間を要する分析プロセスを経ている間に、現場では他の業務課題が浮上してしまうために、結果として、分析結果が完成した時点でその結果がもはや必要とされない事態となることも少なくありません。
開発・提供したBIダッシュボードが使われない
多くの企業において、データサイエンティストやデータ利活用推進組織が開発するBIダッシュボードが、業務担当者の具体的なニーズを充分に反映していないために、使用されずに放置される状態が発生しています。この問題の根本的な原因は、ダッシュボードのデータ粒度が粗く、施策検討に直結しないこと、また業務の変化に対応した内容が反映されていないことです。
実際の業務においては、ダッシュボードに表示される指標は一定ではなく、業務課題や施策内容に応じて変わるべきですが、必要な指標や分析観点が含まれていない場合が多いです。その結果、業務担当者は自分で数値の取りまとめを行う必要があり、BIダッシュボードの価値が低下し、使用されなくなるという事態が生じています。
分析結果を報告しても施策実施につながらない
分析結果に基づく施策提案は、既存の業務に対する深い理解を持つ業務担当者からの反発に直面することがあります。業務担当者は既に忙しく、新たな施策を実施する余裕がない、または既存のやり方を変えることへの抵抗感を持っています。このため、分析結果があっても、それが実際の施策に繋がらないことがあります。
データ分析と施策実施の融合(=BI Ops)の必要性
これらの課題の背後には、データ分析機能と施策実施機能の間における連携の欠如があります。単にデータを可視化し、一方的に報告するだけでは、得られた知見を実際の施策に結びつけることは困難です。ビジネスに根差した具体的な示唆を提供し、それを戦略や組織全体に統合するアプローチが必要となります。
この問題を解決するための一つのアプローチが、私たちが「BI Ops」と呼んでいる考え方です。これは、データ分析機能と施策実施機能の距離を縮める、あるいはこれらを統合するための体制や仕組みを構築する考え方です。このアプローチにより、データ分析から得られるインテリジェンスを直接ビジネスの施策に反映させることが可能となり、組織全体のデータ駆動型の意思決定を促進することが期待されます。
BI Opsとは
BI Opsは、データ分析活動と施策の実施活動を近づけるアプローチであり、データ分析の民主化を推進するための重要な考え方です。通常、データ分析を担当する方とレポートやBIダッシュボードを用いて具体的な施策を実行する方は別々であり、この分離がコミュニケーションのボトルネックや迅速な分析からの施策実施における妨げとなっています。
BI Opsでは、業務に精通した担当者が直接分析やBIダッシュボードの変更を行うことを提案します。このアプローチにより、施策実施担当者のニーズや利用シナリオを深く理解できる人が分析を実施し、その結果を解釈することが可能となります。この担当者は元営業担当、元マーケターなど特定の業務領域に詳しい分析組織のメンバーであることもありますが、最も重要なのは業務への精通です。特に、多くのBIツールはGUIを通じて直感的な操作が可能であり、データ分析の専門家でなくとも使える利点があります。このため、「業務に精通した人が分析を行う」ことで、ビジネス上のアクションに直結する具体的な示唆を導き出すことが容易になります。
ここからはBI Opsを推進していく際に必要な2つのポイントを紹介します。
必要になる2種類のダッシュボード
BIダッシュボードを利用する際には、常に監視すべき重要な指標の推移が見えており、同時に、変化し続ける業務状況に合わせて適切な情報が掲載されるように見直されている必要があります。この課題解決のためには、「目的・要件に応じて2種類のダッシュボードを並行運用する」ことが重要になります。
ハードBIとソフトBI
1種類目が一般的なダッシュボードで、どのような状態でも監視すべき業務上の重要指標が掲載されているものです。こちらは業務状況によって内容を見直す必要がなく、常に固定の指標を観察するためのものということから 「ハードBI」 と呼んでいます。主に業務遂行状況や各種取組の結果振り返りの際に重要指標を用いることから、ここでの可視化対象は”結果指標”になると言えるでしょう。
2種類目が「ハードBI」に対して 「ソフトBI」 と呼んでいるダッシュボードです。こちらは”結果指標”の良し悪しを左右する”プロセス指標”を可視化するものです。
業務状況、例えば現在直面している課題や注力している施策があればその状況を見るために参照する指標が掲載され、業務状況に伴って都度アップデートされるべきものです。結果指標と異なり業務状況をリアルタイムに反映するプロセス指標を参照し、さらにこれをアップデートし続けることで、今必要な、次アクションにつながる情報を即座に報告できます。これにより解像度の高い課題理解や迅速な意思決定が可能となるでしょう。
一方で、これを利用するためには、業務実施担当者が自らの業務内でBIダッシュボードを触り、気になる指標を可視化してみるなど、業務上の仮説を検証することで有益だと判断された指標を会議に持っていくといった業務運用が必要になります。
ハードBIとソフトBIのどちらが重要か、という話ではなく、業務上把握しておくべき指標として、変化しないものと変化するものがある以上、それらが共存できるようなダッシュボードの設計が必要になります。
ソフトBIの実践に必要なシステム・分析スキル・運用プロセス
ソフトBIを実践する際には、ハードBIよりも多くのスキルや要素が求められます。これらは主にシステム、スキル、運用プロセスの3つに分類できます。システムはハードBIでも必要とされますが、ソフトBIではさらにスキルと業務プロセスの観点での対応が求められます。
システムとしては主にBIツールを指します。ハードBIでも必要な要素ですが、ソフトBIでは変更の容易さやアドホックな分析のしやすさに優れたツールが求められます。一度作成したら終わりではなく、毎回の会議で得られたフィードバックをもとに新たな分析観点や指標の検証を行い、ダッシュボードに追加することが必要です。また、会議の中で飛び交う質問に合わせてフィルタリングやドリルダウンの機能を用いてインタラクティブに分析を行うことも求められます。
スキルの面では、アドホックな分析が求められる報告担当者に対し分析スキルが求められますが、高度なレベルは必要ありません。分析ツールを使えるだけで十分です。プログラミングを伴う分析や統計に関する深い知識は不要です。むしろ、業務に関する理解やデータに関する理解、分析すべき課題を特定し、それをどのように検証できるかを考える分析設計のスキルや、分析結果をわかりやすく報告し、周囲からコメントやフィードバックを得るためのファシリテーションスキルが重要です。一般的に企業内で分析組織を立ち上げる際には、分析経験者や専門知識を持つ外部人材を雇用することが多いですが、実際には現在の業務に詳しく、ステークホルダーとの関係性ができている人材の方が、分析の実施および報告担当者に適しているといえるでしょう。
最後に運用プロセスです。分析は一度実施すれば終わりではなく、得られた示唆をもとに次のアクションを決定し、その実施結果を分析することで次の課題やアクションを検討するというサイクルで取り組まれるものです。後述するData-Centirc BPRのように分析活動を既存業務に組み込むための業務プロセス整理も必要ですが、加えて、課題の特定→データの取得→分析の実施→報告と意思決定のサイクルが継続的に回せるようなプロセスの整理・再構築も重要な取り組み事項といえます。
既存業務に対するデータ分析活動の統合(Data-Centric BPR)
分析から得られた知見や示唆をビジネス上の施策に繋げるためには、単なる技術の導入やスキル習得ではなく、既存業務に対してデータ分析活動を埋め込むための業務設計が不可欠です。
なぜなら、施策実施担当者にもデータ分析活動の実施を求める場合、分析ツールの習熟に加えて業務課題に対する仮説の立案やその検証など、業務実施担当者に求められる要素や負担が大きくなってしまいます。これが施策実施担当者の既存業務と統合されず、分析活動が既存業務に対する追加タスクとなってしまうと、担当者はさらなる負担を感じ、分析活動が進まなくなるのは自明ですよね。
これを解消するためには、①既存の業務を楽にすることと同時に ②分析活動がストレスにならないような業務設計が必要になります。
このように、既存業務をデータ利活用を前提としたプロセスに見直し、再構築することをData-Centric BPR(DCB)と呼ぶことにします。
DCBの実践は、既存業務の一部をBIツールによる分析活動に代替することから始まります。まず、現行業務の理解と整理を実施し、BIツールの利用で代替可能な業務を特定します。次に、これまで手動で行っていた業務をBIダッシュボードで自動化し、効率化を図ります。
例えば、”営業活動における定例報告作業”なら、報告資料作成をBIダッシュボードに代替し、日々の営業実施状況を自動で収集・可視化することで、報告会の準備にかかる時間を大幅に削減し、管理者がリアルタイムで営業状況を確認できるようにすることができます。これにより、営業報告会自体を効率的に行う、あるいは必要に応じて定例会自体を短縮・省略することも可能になるでしょう。
分析活動に着手し始めると、どうしても新しいテーマで何かやろうとしたくなってしまいがちですが、よほど明確な課題感や業務仮説がない場合、新しいテーマでの分析活動が継続することほとんどありません。
すでに実施している既存の業務であればその必要性が明確であるため、それを分析ツールの導入などによって楽にしつつ、報告会での標準ツールとして運用するように促すことができれば、分析活動の継続率は格段に高くなります。
データ分析の民主化に向けて
データ分析の民主化は、多くの企業が目指すべき目標ですが、その実現には多くの課題が伴います。 本記事では、その課題を解決するための一つの鍵として「BI Ops」という考え方を紹介しました。
BI Opsはデータ分析機能と施策実施機能の融合を図るアプローチであり、ハードBIとソフトBIの適切な運用、Data-Centric BPRによる既存業務へのデータ分析活動の統合などが含まれます。
BI Opsの考え方を取り入れることで、業務に精通した担当者がデータ分析に携わり、ビジネス上のアクションに直結する具体的な示唆を導き出すことができるでしょう。 皆さまのデータ分析の取り組みにBI Opsの考え方を活かし、組織全体でデータを活用した意思決定を行える環境づくりを進めていかれることを願っています。
データ分析の民主化に向けた歩みを一緒に進めていきましょう。